Some conditions for global asymptotic stability of equilibria of integrodifferential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Global Asymptotic Stability of Equilibria in Models for Virus Dynamics
In this paper several models in virus dynamics with and without immune response are discussed concerning asymptotic behaviour. The case of immobile cells but diffusing viruses and T-cells is included. It is shown that, depending on the value of the basic reproductive number R0 of the virus, the corresponding equilibrium is globally asymptotically stable. If R0 < 1 then the virus-free equilibriu...
متن کاملAsymptotic Self-similarity for Solutions of Partial Integrodifferential Equations
The question is studied whether weak solutions of linear partial integrodifferential equations approach a constant spatial profile after rescaling, as time goes to infinity. The possible limits and corresponding scaling functions are identified and are shown to actually occur. The limiting equations are fractional diffusion equations which are known to have self-similar fundamental solutions. F...
متن کاملGlobal Asymptotic Stability for a Class of Nonlinear Chemical Equations
We consider a class of nonlinear differential equations that arises in the study of chemical reaction systems known to be locally asymptotically stable and prove that they are in fact globally asymptotically stable. More specifically, we will consider chemical reaction systems that are weakly reversible, have a deficiency of zero, and are equipped with mass action kinetics. We show that if for ...
متن کاملLyapunov stability solutions of fractional integrodifferential equations
Lyapunov stability and asymptotic stability conditions for the solutions of the fractional integrodiffrential equations x (α) (t) = f (t, x(t)) + t t 0 K(t, s, x(s))ds, 0 < α ≤ 1, with the initial condition x (α−1) (t 0) = x 0 , have been investigated. Our methods are applications of Gronwall's lemma and Schwartz inequality.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1983
ISSN: 0022-247X
DOI: 10.1016/0022-247x(83)90124-5